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ABSTRACT 

It is proved t h a t  geodesic balls in a R i e m a n n i a n  s y m m e t r i c  space  of r ank  

one are stable solut ions to a f l ee -boundary  problem for the  Lap lace-  

Bel t rami  opera tor  wi th  cons tan t  D i r i ch l e t -Neumann  bounda ry  condit ions.  

Th i s  resul t  suppor t s  Schiffer's conjecture  t ha t  balls are the  only solut ions 

to the  problem. T h e  ma in  ingredient  of the  proof  is a charac ter iza t ion  of 

geodesic balls by the  mult ipl ici ty of  eigenvalues of the  Lap lace -Be l t rami  

operator .  

1. I n t r o d u c t i o n  

The Schiffer conjecture (cf. {Yau, problem 80]) concerns the connection between 

geometric symmetry of a domain and the solvability of a certain spectral problem 

for the Laplace operator on this domain. 

More precisely, the conjecture is that balls are the only domains with smooth 

connected boundaries such that there exists an eigenfunction of the Laplace 
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operator with Neumann boundary data which is constant on the boundary and 

non-constant on the domain. 

Brown, Schreiber and Taylor [BST] and Berenstein [B] have established a 

close relation between Schiffer's conjecture and the so-called Pompeiu problem 

in integral geometry over the motion group (cf. [Zl, Z2, Z3]). L. Zalcman's survey 

[Z3] contains information on the current state of the problem. 

This paper is devoted to the study of deformations of geodesic balls in 

Riemannian symmetric spaces of rank one, from the point of view of Schiffer's 

conjecture. We want to know to what extent one can deform a ball, preserving 

the solvability of a corresponding Dirichlet-Neumann spectral problem for the 

Laplace-Beltrami operator. 

In Theorem 2 we show that, essentially, the only perturbations of a geodesic 

ball which preserve the solvability of the Dirichlet-Neumann spectral problem 

are trivial perturbations by balls. Since Schiffer's conjecture is that only balls 

provide solvability of this spectral problem, Theorem 2 supports this conjecture. 

Earlier, a perturbation theorem of this kind was obtained for the Euclidean 

plane by the first author [A] and, independently, by a different method by 

T. Kobayashi [Ko] for the Euclidean spaces of any dimensions. Though the 

proofs in [A] and [Ko] are completely different, both of them strongly use explicit 

constructions and special formulas from harmonic analysis in Euclidean spaces. 

The proof in [A] also uses Riemann mappings (and, therefore, works for the 

case of the plane only) and the proof in [Ko] is based on quite delicate technical 

estimates for Fourier transforms of characteristic functions of domains. 

The main idea in this paper is to exploit the multiplicity of eigenvalues of the 

Laplace operator. We prove in Theorem 1 that a geodesic ball can be charac- 

terized by the multiplicity of the Dirichlet-Neumann spectrum. Then the result 

concerning deformations in the Dirichlet-Neumann problem follows, due to the 

standard arguments of perturbation theory that the multiplicity of eigenvalues 

by small perturbations of operators does not increase. This approach uses, essen- 

tially, only the homogeneous structure and enables us, in particular, to extend 

the results of [A] and [Ko] to Riemannian spaces. Note that the idea of inferring 

geometric symmetries from the multiplicity of eigenvalues has also been used in 

works by P. Aviles [Av] and B. Kawohl [Ka], devoted to the Schiffer-Pompeiu 

problem. Essentially, the paper [Av] contains the proof of Theorem 1 for the 

Euclidean case. 
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The sense of Theorem 2, from the point of view of the Pompeiu problem, is 

that  if domains are close enough to a ball, but are not balls, then they have 

thc Pompeiu property, i.e., provide uniqueness in the corresponding integral 

geometry problem. It is interesting to compare this with Brown and Kahane 's  

result [BK] which says that  if a domain is geometrically far from being a ball (a 

cigar-like domain), then it also possesses the Pompeiu property. We would like 

to emphasize that  our result is valid for spaces of non-positive curvature. In the 

case of positive curvature there are examples of nonisolated domains that  fail the 

Sehiffer conjecture, as was shown by C. Bercnstein and P.C. Yang [BY] 

The authors thank Carlos Berenstein with whom the idea of deriving geometry 

from the multiplicity of eigenvalues of the Laplace operator was discussed earlier. 

2. P r e l i m i n a r i e s  a n d  t h e  m a i n  resu l t s  

2.1 Throughout the whole paper, M will denote a noncompact connected 

globally symmetric Riemannian space of rank I, d = dim M. We will assume 

that M is irreducible, so M is of noneompact or Euclidean type. This means 

that  M = G/K,  where G is a connected real semisimple Lie group with finite 

center and K is a maximal compact subgroup, and if M = IR '~ then G = M(I~ '~ ), 

tile group of all rigid motions, and K = SO(n). 

We denote o = ~v(e), where 7r: G ~ G / K  is the canonical projection and e is the 

unit of G. By B(a, r) we denote the geodesic ball B(a, r) = {x �9 M: p(a, x) < r}; 

p is the Riemannian metric on M and B = B(0, 1). 

L will denote the Laplace-Beltrami operator L = divgrad oll M (cf. Helgason 

IHel). 

2.2 For a bounded domain gt C M with connected smooth boundary 012 we will 

consider two kinds of boundary value problems for the operator L, the spectral 

problem with Dirichlet boundary data  

(D)n L0 + U~) ---- 0 , ~) E C2([~) N 6 1 ( ~ ) ,  

Io~t-- 0, 

and the spectral problem with constant Diriehlet-Neumann boundary data  

L u +  A u = O  , uEC2(FI)  ClC'(~) ,  

(DN) a u [oa= e 

grad u Ion-= 0, 
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where c is a constant. 

We will call # a D-e igenva lue  for  t h e  d o m a i n  ~ if the problem (D)f~ has 

a non-zero solution r and we call A a D N - e i g e n v a l u e  for  ~ if the problem 

(DN)~ has a non-constant eigenfunction u. This is equivalent to A r 0 and the 

existence of the non-zero solution u, which in turn is equivalent to c r 0. 

Denote by mD(~,/~) and mDN(~'I,A) the dimensions of the corresponding 

eigenspaces. According to Holmgren's uniqueness theorem, the multiplicity 

mDN(~, A) can take only values 0 and 1. 

The Schiffer  c o n j e c t u r e  asserts that  the existence of at least one DN-eigen- 

value A for f/ (mDN(~,,~) = 1) implies fl = B(a , r )  for some a E M, r > 0. We 

prove the following particular result: 

THEOREM 1: 

(1) I f  there exists at least one DN-eigenvalue A for ~2 such that its 

D-multiplicity mD(~, A) _< d imM, then ~2 is a geodesic ball, ~2 = B ( a, r ). 

(2) Conversely, i f  A is a DN-eigenvalue of  B(a , r )  then mD(B(a , r ) ,A )  = 

dim M. 

Theorem 1 and arguments of operator perturbation theory enable us to prove 

the "rigidity" theorem for deformations of geodesic balls by domains with solvable 

DN-problems. 

Before formulating the results we shall give the definition of deformation we 

wish to consider. 

Definition 2.1: We say that  a one-parametric family {~'~t}tE[O,T) is a 

D N - d e f o r m a t i o n  of the unit ball B if there exists a mapping 

F: [0, T) x B - *  M 

with properties 

(1) F e C~([0, T) • B),  

(2) F(t ,  .): B ~ ~t  is a C2-diffeomorphism, 

(3) F(0, x) = x for all x �9 B, that is ~/0 = B, 

(4) for any t �9 [0, T) there exists at least one DN-eigenvalue At for f~t and 

suPte[0,T ) At < (X). 

THEOREM 2: Let {~t}te[0,T) be a DN-deformation of the unit geodesic ball B.  

Then there exists e > 0 such that for each t �9 [0, e) the domain ~t is a geodesic 

ball, ~t  = B(at,  rt). 
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Remark: Throughout the paper we call X an eigenvalue and u ~t 0 an eigen- 

function for an operator L if Lu § Au = O. 

3. P r o o f  o f  T h e o r e m  1 

In this section we characterize the unit geodesic ball B by the multiplicity of 

DN-eigenvalues. 

3.1 The second part of Theorem 1 concerns the D-multiplicity of 

DN-eigenvalues for geodesic balls and we are going to examine these assertions 

straightforwardly. It suffices to consider the unit ball B. 

Therefore, let A be a DN-eigenvalue for B and u be the eigenfunction 

corresponding to A. Since for any k E K the composition u o k is again a so- 

lution to (DN)B , we have, by the uniqueness theorem, u = u o k and, therefore, 

u is a K-invariant eigenfunction of L, i.e., u is a spherical function. 

In the case M = R '~ , L = A is the ordinary Laplacian in R ~, and we have 

J(,,-2)/2(alxl) 
u(x) = const 

tx)(--2)/2 

where (~2 = A and J))/2(c~) = 0, according to the Neumann boundary condition. 

Due to this condition, any partial derivative of u is a solution to (D)B, so we 

can produce n D-eigenfunctions 

Jn/2(~lzl) 
uj(x)  = u(x) = const ixl,~/2 xj ,  j = 1 , . . . , n .  

It is well-known that the functions Ul , . . . ,  u , ,  given by this formula, constitute 

a basis in the space of all solutions to A r 1 6 2  = 0 with boundary data ~loB --- 0. 

Thus, mD( )L B) = n. 

3.2 In the general case the arguments are similar. Let us consider the Caftan 

decomposition 

~ = ~ e ~ ' ,  [~,~'l C P,  

of the Lie algebra ~ of G as the direct sum of the Lie algebra of K and the 

complementary linear space P. The linear space / )  is isomorphic to the tangent 

space (M)o by the exponential mapping. 

Choose a basis X 1 , . . . , X d ,  d = dim P = dim M, in/~. The vector fields Xj 

commute with L, hence the functions 

uj = Xju ,  j =  l , . . . , d  
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are solutions to (D)B because the boundary data for u in (DN)B implies zero 

boundary conditions for uj in (D)B. Clearly, the system u l , . . . , U d  is linearly 

independent since, otherwise, u is constant on integral manifolds of a vector field 

of the form c~lX1 + . . .  + OLdXd and, together with u = const on OB, this would 

imply u -= const.  

Thus, if we denote V[u] = span {Ul , . . . ,  ud} and by V~ the space of all solutions 

to (D)B, then V[u] C V~, and d < dimVx = rno(B,~).  

It  remains to show that  actually V[u] = V~. For this purpose, we represent u 

in geodesic polar coordinates (r, 0) in M (cf. [He]). In these coordinates, the 

Laplace-Beltrami operator L has the form 

(3.1) L = A(L) + Ls~, 

where A(L) = ~ + o is the radial part,  A(r) is the area of the sphere 

S~ = OB(o, r) and Lsr is the Laplace-Beltrami operator on S~. When we use 

normal coordinates, we see that  

= z j u ( x )  = = = 

where ~(r)  = u ' ( r ) .  

The spherical function u = u(r)  satisfies the equation A(L)u = - A u  and, 

differentiating both sides of this equation by r, yields 

(3 .2 )  + = - A s .  

We also have the condition c~(1) = 0 because of the Neumann boundary condition 

in (DN)B. 

Comparison of (3.2) and the identity Luj = -)~uj with L in the form (3.1) 

gives 

Ls~/3j= 13j, j =  l , . . . , d .  

The functions /~j are uniquely determined by their values on the unit sphere 

S = OB and for r = 1 we have 

(3.3) Ls/3j = n/3j, 

with eigenvalue ~ = 
r = l  

j = l , . . . , d ,  
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On the other hand, all solutions to the equation 

(3.4) L~p + A~p = 0 

 ls=o 
separate variable r, 0: f3(r, 0) = p(r)q(O), where p is fixed, and q runs through the 

eigenspace V ( ')  of the Laplace Beltrami operator on the unit sphere S: Lsq = pq. 

All solutions flj to (3.3) must be in V ( ' ) ,  so # = n, and as uj = (~13 i satisfy 

(3.4), we have p = a. 

Thtm, Y~ = {a(r )  q(O) ] q �9 Y(~)}. Also, 

= r(0) I z �9 span { Z a , . . , r d } } .  

In order to conclude that  V[u] = V~, it suffices to prove that  span {r~ . . . . .  rid} 

is a K-invariant subspace of V (~), because then these two spaces coincide by the 

irreducibility of representation of the group K in V (~). 

The group K acts only in 0-variables, so the K-invariance of span {/31 . . . . .  ~/d} 

is equivalent to the K-invariance of V[u] = span {Ul . . . . .  ua}. 

To check this, we have to prove uj o k �9 V[u] for all j = 1 , . . . , d  and any 

k �9 K. By the Taylor formula it suffices to show that  D ~ " . . . D ~ k u j  �9 V[u], 

where D 1 , . . . ,  Dk is a basis in s and m~ are arbitrary nonnegative integers. In 

turn, it would follow from the inclusion Diuj �9 V[u] for all i = 1 , . . . , k  and 

j = l  . . . . .  d. 

But, Diuj = D~Xju = [Di, Xj]u + Xj  Din. The last summand vanishes because 

Dju = 0 due to the K-invariance of u. As for the first term, we know that  

[Di, Xj] �9 7~ and, therefore, 

d 

[D. Xjl = ~--~ cfjXk 
k = l  

for some constants c~j. Then [Di,Xj]u = Y~d=l c~jXku = Y~k=,d C~jUk �9 V[U]. 

Thus, we have proven 

PROPOSITION 3.1: I f  m o w ( B ,  A) = 1, then roD(B, ~) = d = d imM.  

This Proposition is the second assertion in Theorem 1. 

3.3 Now we come to the proof of part  1 of Theorem 1. 

The main ingredient of the proof is 
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LEMMA 3.2: Let il be a bounded domain in M with connected smooth boundary 

Oil. Suppose that there exists a function u E C1(~) and linearly independent 

vector fields T1, . . .  Tk E ~, where k equals the dimension of the Lie algebra R, 

k = dim ~, such that 

(1) u is real-analytic in il, u Ion= c = corist, and u ~ c on il, 

(2) Tju = 0 on ~, j = 1 , . . . , k .  

Then, il is a geodesic ball, il = B(a, r). 

Proof: By (1) there exists Xo E ~2 for which U(Xo) ~ c. Applying a translation, 

we can assume Xo = o. 

Let us introduce the subspace 91 C ~:  

9 1 = ( T E ~ I T u = O  on g/}. 

I t  is easy to see that  92 is a Lie subalgebra. 

Condition (2) implies dim91 :> k. Let us consider the closed (connected) Lie 

subgroup N of G generated by the Lie subalgebra 91. For any x E M we denote 

by N~ the N-orbit  

N= = {nx I n e g } .  

By construction, u = const on Nx M ~. In particular, u = const on No Ni l .  

We know that  u(o) ~ c and u Ion= c. Therefore, No, the orbit of the point o, is 

disjoint from Of/and,  as No is a connected manifold, No C 12. Boundedness of il 

implies boundedness of No. Proposition 4.4 in Chapter II  of [He] states that  the 

orbit No, which is equal to the coset space N / ( N  M K),  is a closed topological 

subspace of M. Together with compactness of the group N M K,  this implies that  

N is a compact  Lie subgroup of G. 

Then N is contained in a maximal  compact  subgroup K*,  which is conjugated 

to K ([He], Th. 2.1), N C K* = gKg -1. 

For the Lie algebras we have the inclusion 9t C ~*. But dim 91 _> k = dim ~i = 

d im~* and, for this reason, 91 = ~*. This means that  the Lie groups N and 

K* are locally homomorphic, N = K*/H,  where H is a finite normal subgroup 

of K*. Thus, any two orbits Nx and K~ have a common relatively open subset 

{kx: k E U(e)}, where U is a neighborhood of the unity e E K* such that  

H M U(e) = {e}. These two orbits are connected real-analytic manifolds. Thus 

they must coincide, N~ = K~. 
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Clearly, the orbit K~ is a geodesic sphere centered at the point a = go. Our 

final arguments are as follows: the function u is constant both on 0fl and on 

each sphere N~. Since u ~ const on ~,  we conclude that  O~ coincides with one 

of the spheres N~ and, correspondingly, ~ is a geodesic ball centered at a. | 

PROPOSITION 3.3: The D-multiplicity mD(~,  A) of a DN-eigenvalue A cannot 

be less than dim M. 

Proof'. We saw that  if u is a DN-eigenfunction for ~ with eigenvalue A, then 

Xlu , . . . ,XdU are D-eigenfunctions for f~ with the same eigenvalue A. The 

inequality mD(9 ,  A) < d i m M  = d would imply a l X l u  +. . "  + a4XdU = 0 in 

~2, for some a l ,  ..., ad, and then u is constant on integral manifolds of the vector 

field alX1 + . . .  + adXd. Together with u [o~= const this would imply u - const, 

which is impossible. | 

Now we are ready to prove part  1 of Theorem 1. 

Suppose that  A is a DN-eigenvalue for the domain ~ and mD(~,A)  < 

dim M = d. 

Choose a basis D 1 , . . . , D k ,  k = d i m s  in s and a basis X 1 , . . . , X d ,  d -- 

dim P = dim M, in the complementary subspace P C ~5. 

Let u be an eigenfunction corresponding to A, i.e., u is a non-constant solution 

to (DN)~. 

The Laplace-Beltrami operator L commutes with the vector fields Di and Xj,  

so  

Diu , X l U , . . .  , Xdu  

is a collection of solutions to (D)f~ (the Dirichlet boundary data for these 

functions are consequences of the Neumann boundary data  for u). 

By the hypothesis on A, any d + 1 solutions to (D)f~ are linearly dependent 

and we showed already in Proposition 3.3 that  the functions X l u , . . . ,  Xdu are 

linearly independent. Hence 

d 

Oiu = ~ a i j X j u  ' 
j = l  

for some constants aij. Thus, if we set 

d 

T, = D , -  Z a i j X j ,  
j = l  



52 M.L. AGRANOVSKY AND A. M. SEMENOV Isr. J. Math. 

then 

Tiu=O, i = l , . . . , k .  

It remains to note that  the Ti are linearly independent, since Di E ~, Xj  E 

p,  NM;~ = {0} and {D1, . . . ,  Dk}, { X I , . . . ,  Xd} are bases in N and :P respectively. 

So the hypotheses of Lemma 3.2 are satisfied, and F/is a geodesic ball. I 

4. Convergence of eigenfunctions by deformations of t he  un i t  ball 

In this section, we study the behavior of DN-eigenfunctions of sequences of 

domains, shrinking to the unit ball. We show that  the eigenvalues and eigen- 

functions of some subsequences of these domains tend to DN-eigenfunctions of 

the ball. 

4.1 Let (~2t)te[0,T) be a DN-deformation of the unit ball B and suppose that 

{t,} is a sequence of values of the parameter t tending to 0, such that the cor- 

responding eigenvalues ,~,~ = ,~t~ tend to some limit ,~0, limn-.o~ An = ,~o. We 

denote 12,~ = f~t~ and, by u~, the solution to (DN)~. corresponding to the eigen- 

value ,~,~. 

Our purpose is to show that ,~0 is a DN-eigenvalue for B. 

LEMMA 4.1: Let u E C~(12) MCI(~). The function u is a solution to (DN)a with 

eigenwalue A if and only if for any v E C2(M) the identity holds: 

(4.1) ~ ( u - c ) L v d V  =-)~ ~ uvdV, 

where dV is the element of G-invariant volume on M. 

Proof." If u satisfies the system (DN)n, then grad u = u - c  = 0 on the boundary 

and (4.1) follows from the Green formula and the Product Rule for the divergence. 

Conversely, suppose (4.1) holds. If v is an arbitrary function in C2(M) with 

compact support in 12, then the Green formula and (4.1) imply 

/n  L(u - c)vdV = /a(u  - c)LvdV = -)~ /n  uvdV 

and, therefore, Lu = - l u .  

In order to obtain boundary conditions for u, take arbitrary v E C2(M). By 

the same argument, 

-vs [ ( u -  c)gradv - v grad u] . n d S  = -...[o div [ ( u - c )  gradv - v gradu] dV 

= [ [ L ( u -  c) v -  ( u -  c)Lv] dV = O, 
Jn 
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and varying v E C2(M)  we obtain u - c = g r a d u  = 0 on r I 

LEMMA 4.2: I f  U1, u2 E L2(fl) n C2(~)  satisfy (4.1), then Ul = u2. 

Proos We have for w = Ul - u2: 

(4.2) ~ wLvdV = -,k /~  wvdV, 

53 

Then u~ belongs to the unit sphere in L2(M)  and, due to its compactness  in 

the weak topology, there exists a subsequence u,~ k which converges in the weak 

topology, 

u ~  -~, u 0 E L2(M).  

f n(z), xeric,  U~(X) 
0, x r fin. 

where v E C2(M)  is arbitrary. 

Let us extend w to M by sett ing w(x) = 0 for x r ~.  

In (4.1) we can replace v by the shifted function vg = v og -1, g E G and, by a 

change of variables and G-invariance of the opera tor  L, we obtain (4.2) for w9-1. 

Integrat ing over G with a smooth  weight gives us a smooth  approximat ion  of w 

in M. So we can assume w is continuous in M. 

Now take v in (4.2) to be an arbi t rary  bounded K-spherical  function v = ~ ,  

on M, L~  u = #~u and if # ~ )~ we have f~ w~udV = O. 

Thus ~ (# )  = 0 for all # ~ )~, where ~ is the K-spherical  Fourier transform. 

Then  the K-average 

w#(x)  = ]K w(kx) dk 

is identically zero and, in particular,  w(o) = w#(o) = O. Since (4.2) is true for 

all translates wg, we conclude w =- 0. I 

4.2 Let ~,~, un, ~,~, A0 be as in 4.1. Let us normalize un by the condit ion 

/ a  lunl2dY = l. 
n 

The function u,~ satisfies Lun + )~,,un = 0 in ~,~ and u,, - c,~ = grad un = 0 on 

012n. We extend u,~ to the whole space M by 
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LEMMA 4.3: The limit function uo = u~ [-E belongs to C2(B) A Ca(B) and 
satisfies 

Luo+Aouo=O inB, u o - c o = g r a d u o = 0  onOB, 

for some constant Co, which is a limit point of {c,~ k }. 

Proo~ By Lemma 4.1 we have 

(4.3) fMU~LvdV-cn /~ LvdV =-An /MU*VdV 

for any v E L2(M) n C2(M). Here un I0~. = cn. We claim tha t  the sequence c~ 

is bounded. If not, then for some subsequence, [c~, [ ~ oo. Dividing (4.3) by 

cn and letting n ~ c~, we would arrive, using the boundedness of A, and the 

L2-boundedness of u~, at f s  LvdV = O, which cannot be true for an arbi t rary 

v. Thus, cn is bounded and, therefore, there exists a convergent subsequence 

Cnk ~ C O. 

For the sake of simplicity, renumerate all the sequences under consideration 

and let us assume that  c~ ~ co. Now we can let n --* oo in (4.3) and we obtain 

/MU~LvdV-co/BLvdV=--AO/MU~ vdV. 

Since all u~ vanish out of ~n,  u~ -~ u~ and domains ~l~ tend to B, the u~ also 

vanishes in M \ B and we have 

where Uo = u~ [B- 

Take v E C2(M) with compact support  in B. By the Green formula, 

fB LvdV = 0 and 

(4.5) BuoLvdV = -Ao f s  UoV dV 

which means that  Uo is a weak solution of the equation Luo + AoUo = 0 in the 

unit ball B. By the ellipticity of the Laplace-Beltrami operator, Uo is a classical 

solution, i.e., uo E C2(B). 
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Now, for any k �9 K the shifted function uo o k also satisfies (4.5) and L e m m a  

4.2 asserts tha t  u0 o k = uo. Therefore, uo is K-invariant  and is a solution to the 

equation 

A(L)uo + Aouo = 0 in B. 

But all such solutions are known [GV]: 

u o ( r ) = 2 F : ( ~ ( p + i # )  ~ ( p - i # ) a + l , - s i n h 2 k r )  

where 2F1 is the hypergeometric  function, a = d _ 1, p and k are real parameters  

uniquely associated to the symmetr ic  space M, and k2(p 2 + #2) = Ao. The  only 

information we want to derive from this expression is tha t  u0 can be extended to 

a function in C I ( B ) .  

Now (4.4) and Lemma 4.1 complete the proof. | 

Lemma  4.3 does not  as yet  mean  tha t  Ao and uo are a corresponding DN- 

eigenvalue and DN-eigenfunction, since we did not check yet tha t  u0 ~ const. 

The following Lemma provides a tool to prove this. 

LEMMA 4.4: Let G be a bounded domain in M with a smooth boundary, and 

{Ok }k~176 be an orthonormal basis in L2(G) of eigenfunctions of L with boundary 

conditions on OG. 

Let ~ ~ G be a subdomain with smooth boundary 0~, and for u �9 

C2(~'/) N C1(~)  suppose that 

A u + A u = 0 ,  u - c = g r a d u = 0  on0g / .  

Then, 

k=l ~12 1 -- ~ = c 2 vol(g/) 

where ak is the eigenvalue of Ck and #k = (u, Ok>L2(l}). 

Proof Let us extend u to the function u* �9 L2(G) by: 

m 

f u(x), z �9 a, U* (X) 
O, x E G \ f L  

Since u - c = grad u = 0 on 0 ~  we have by the Green formula 

/[( u -  c)LCk - OkLu] dV = O. 
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But LCk = --akCk, Lu = - ~ u  and ff~ @kudV = Pk, hence we arrive at 

(ak - ~) Pk = c .  ak f n  CkdV. 

Dividing by ak (which are positive) we obtain 

k=l  k : l  

and the Lemma follows since the right-hand side is equal to c 2 vol(f~) due to the 

Plancherel formula. II 

Let us apply Lemma 4.4 to the function u,~. 

(4.6, ~-~ [p(n)] ' (i - ~A'~)' = c~  vol(f~n), 
k=l 

where #~n) = (u~,r {r is an orthonormal basis m L2(G) of 

eigenfunctions of L with Dirichlet boundary data, and ak is the corresponding 

eigenvalue. 

The sequence ,~ ~ Ao, as n ~ c~, so it is bounded. 

1 for k > ko. Since ak ~ cx~, there exists ko such that  A,~/ak < 5 

Then from Lemma 4.4, 

(4.7) c2nvol(f~,~)> ~ [#(kn)] 2 ( 1 - A n ~ 2 >  1 ~ [ .( '0]  2 

- -  k=ko+l O~k ] - -  4 k=k0q-1 

We have  used here the  that  = I ;l' . V  -- 1 

Now assume, in contradiction with what is claimed, that  Uo = 0. This means 

that  u~ 2.  0 in L2(G) and, therefore, for each k the coefficients p(n) --, 0 as 

n --* cx~. Thus, letting n --* ~ ,  we obtain from (4.7) that 

1 c~ vol(B) > ~. 

But Co = Uo lob = 0 and we have arrived at a contradiction. 

Let us summarize what we have proven in this section as 

PROPOSITION 4.5: I f  An ~ A0 ~ 0 as n ---, oo and each A,, is a DN-e igenvalue  

for the domain ~2,,, then Ao is a DN-eigenvalue  for the unit baH B.  
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5. P r o o f  o f  T h e o r e m  2 

Let (~t)te[O,T) be a DN-deformation of the unit ball B. Suppose, in contradiction 

with what is claimed in Theorem 2, that there exists a sequence t,, ---+ 0 such 

that each f~n = ~t~ is not a ball. Since the sequence ~n = )~t~ is bounded by 

hypothesis, we can choose a convergent subsequence ~-k ~ A0. 

Without loss of generality we can assume that the original sequence A,~ 

converges to A0. 

Now let us turn to Definition 2.1 of DN-deformations. We can blow up the 

Laplace-Beltrami operator from l~t to B by means of mappings 

Ft: B ---+ ~tt, Ft(x) = F( t ,x) .  

Then we obtain the family 

(F;- ) , (P;- ) F -1 n t = L o  1 * 1 * U ~ U O  t , 

of operators of the second order in B. 

Since F is a C2-mapping, the coefficients of the operator Lt are continuous 

functions of the parameter t. Clearly, the boundary spectral problems for the 

operator L in fit and for the operator Lt in B are equivalent, 

Le~ us consider the (compact) resolvent R(Lt ,  A) = (Lt - )~)-1 which is a 

continuous function in t as long as )~ is a regular value for Lt. 

Choose a closed contour 7 in the complex plane, which surrounds )~0 and such 

that no other D-eigenvalue of L in B is contained in the domain A(@, bounded 

by 7- 

Denote by P(% t) the projector to the D-eigenspaces of Lt, corresponding to 

the D-eigenvalues in A(7): 

P(7,  t) = ~ R(Lt ,  ~) d~ 

(cf. [Kato], [DS]). 

If t = 0, then Lt [t=o = L and P(7,  0) is just the projector to the eigenspace of 

A0. Since eigenspaces are orthogonal, the dimension of the range of P(7 ,  t) is 

(5.1) d imP(7 ,  t )=  ~ mD(~t,,~). 
~EA(-~) 
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The operator function P('r,  t) is continuous in a small enough neighborhood 

It] _< 6 of t = 0 and, hence, dimP(q, , t )  = const for It I < df. And since tn ~ 0 

and An --* Ao a s n - - *  oc, we have for n large enough, n >_ N, [tnl < ~f and 

An E A(7). Each An is a DN-eigenvalue for L in 12t= and, by Proposition 3.3, 

mD( ~t,~ , )in) >_ dim M. Therefore, 

mD(B, Ao) = d imP(7 ,0 )  = Z mD(~t,A) > mD(12t.,$,~) >_ dimM. 

Thus Ao is a D-eigenvalue for the unit ball B, and therefore Ao ~ 0 (if Ao = 0, 

then by the maximum principle for harmonic functions, any D-eigenfunction for 

Ao is zero and we would have roD(B, Ao) = 0). Then Proposition 4.5 yields that 

Ao is a DN-eigenvalue for B. 

Now we can apply Theorem 1, part 2, that says that roD(B, Ao) = d imM. 

Then 

mD(~2t~,An) < ~ mn( f l t , ,A)  = mD(B, Ao) = d i m /  

and it remains to refer to Theorem 1, part 1 in order to conclude that  all ~t~ 

are balls when n is large enough. This contradiction completes the proof of 

Theorem 2. | 
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